my iklan

Senin, 25 Mei 2009

materi elektronika dasar

semi konduktor








Semikonduktor merupakan elemen dasar dari komponen elektronika seperti dioda, transistor dan sebuah IC (integrated circuit). Disebut semi atau setengah konduktor, karena bahan ini memang bukan konduktor murni. Bahan- bahan logam seperti tembaga, besi, timah disebut sebagai konduktor yang baik sebab logam memiliki susunan atom yang sedemikian rupa, sehingga elektronnya dapat bergerak bebas.

Sebenarnya atom tembaga dengan lambang kimia Cu memiliki inti 29 ion (+) dikelilingi oleh 29 elektron (-). Sebanyak 28 elektron menempati orbit-orbit bagian dalam membentuk inti yang disebut nucleus. Dibutuhkan energi yang sangat besar untuk dapat melepaskan ikatan elektron-elektron ini. Satu buah elektron lagi yaitu elektron yang ke-29, berada pada orbit paling luar.

Orbit terluar ini disebut pita valensi dan elektron yang berada pada pita ini dinamakan elektron valensi. Karena hanya ada satu elektron dan jaraknya 'jauh' dari nucleus, ikatannya tidaklah terlalu kuat. Hanya dengan energi yang sedikit saja elektron terluar ini mudah terlepas dari ikatannya.

Gambar-1 : ikatan atom tembaga

Pada suhu kamar, elektron tersebut dapat bebas bergerak atau berpindah-pindah dari satu nucleus ke nucleus lainnya. Jika diberi tegangan potensial listrik, elektron-elektron tersebut dengan mudah berpindah ke arah potensial yang sama. Phenomena ini yang dinamakan sebagai arus listrik.

Isolator adalah atom yang memiliki elektron valensi sebanyak 8 buah, dan dibutuhkan energi yang besar untuk dapat melepaskan elektron-elektron ini. Dapat ditebak, semikonduktor adalah unsur yang susunan atomnya memiliki elektron valensi lebih dari 1 dan kurang dari 8. Tentu saja yang paling "semikonduktor" adalah unsur yang atomnya memiliki 4 elektron valensi.

Susunan Atom Semikonduktor

Bahan semikonduktor yang banyak dikenal contohnya adalah Silicon (Si), Germanium (Ge) dan Galium Arsenida (GaAs). Germanium dahulu adalah bahan satu-satunya yang dikenal untuk membuat komponen semikonduktor. Namun belakangan, silikon menjadi popular setelah ditemukan cara mengekstrak bahan ini dari alam. Silikon merupakan bahan terbanyak ke dua yang ada dibumi setelah oksigen (O2). Pasir, kaca dan batu-batuan lain adalah bahan alam yang banyak mengandung unsur silikon. Dapatkah anda menghitung jumlah pasir dipantai.

Struktur atom kristal silikon, satu inti atom (nucleus) masing-masing memiliki 4 elektron valensi. Ikatan inti atom yang stabil adalah jika dikelilingi oleh 8 elektron, sehingga 4 buah elektron atom kristal tersebut membentuk ikatan kovalen dengan ion-ion atom tetangganya. Pada suhu yang sangat rendah (0oK), struktur atom silikon divisualisasikan seperti pada gambar berikut.

Gambar-2 : Struktur dua dimensi kristal Silikon

Ikatan kovalen menyebabkan elektron tidak dapat berpindah dari satu inti atom ke inti atom yang lain. Pada kondisi demikian, bahan semikonduktor bersifat isolator karena tidak ada elektron yang dapat berpindah untuk menghantarkan listrik. Pada suhu kamar, ada beberapa ikatan kovalen yang lepas karena energi panas, sehingga memungkinkan elektron terlepas dari ikatannya. Namun hanya beberapa jumlah kecil yang dapat terlepas, sehingga tidak memungkinkan untuk menjadi konduktor yang baik.

Ahli-ahli fisika terutama yang menguasai fisika quantum pada masa itu mencoba memberikan doping pada bahan semikonduktor ini. Pemberian doping dimaksudkan untuk mendapatkan elektron valensi bebas dalam jumlah lebih banyak dan permanen, yang diharapkan akan dapat mengahantarkan listrik. Kenyataanya demikian, mereka memang iseng sekali dan jenius.

Tipe-N

Misalnya pada bahan silikon diberi doping phosphorus atau arsenic yang pentavalen yaitu bahan kristal dengan inti atom memiliki 5 elektron valensi. Dengan doping, Silikon yang tidak lagi murni ini (impurity semiconductor) akan memiliki kelebihan elektron. Kelebihan elektron membentuk semikonduktor tipe-n. Semikonduktor tipe-n disebut juga donor yang siap melepaskan elektron.

Gambar 3 : doping atom pentavalen

Tipe-P

Kalau silikon diberi doping Boron, Gallium atau Indium, maka akan didapat semikonduktor tipe-p. Untuk mendapatkan silikon tipe-p, bahan dopingnya adalah bahan trivalen yaitu unsur dengan ion yang memiliki 3 elektron pada pita valensi. Karena ion silikon memiliki 4 elektron, dengan demikian ada ikatan kovalen yang bolong (hole). Hole ini digambarkan sebagai akseptor yang siap menerima elektron. Dengan demikian, kekurangan elektron menyebabkan semikonduktor ini menjadi tipe-p.

Gambar 4 : doping atom trivalen

Resistansi

Semikonduktor tipe-p atau tipe-n jika berdiri sendiri tidak lain adalah sebuah resistor. Sama seperti resistor karbon, semikonduktor memiliki resistansi. Cara ini dipakai untuk membuat resistor di dalam sebuah komponen semikonduktor. Namun besar resistansi yang bisa didapat kecil karena terbatas pada volume semikonduktor itu sendiri.

Dioda PN

Jika dua tipe bahan semikonduktor ini dilekatkan--pakai lem barangkali ya :), maka akan didapat sambungan P-N (p-n junction) yang dikenal sebagai dioda. Pada pembuatannya memang material tipe P dan tipe N bukan disambung secara harpiah, melainkan dari satu bahan (monolitic) dengan memberi doping (impurity material) yang berbeda.

Gambar 5 : sambungan p-n

Jika diberi tegangan maju (forward bias), dimana tegangan sisi P lebih besar dari sisi N, elektron dengan mudah dapat mengalir dari sisi N mengisi kekosongan elektron (hole) di sisi P.

Gambar 6 :forward bias

Sebaliknya jika diberi tegangan balik (reverse bias), dapat dipahami tidak ada elektron yang dapat mengalir dari sisi N mengisi hole di sisi P, karena tegangan potensial di sisi N lebih tinggi.

Dioda akan hanya dapat mengalirkan arus satu arah saja, sehingga dipakai untuk aplikasi rangkaian penyearah (rectifier). Dioda, Zener, LED, Varactor dan Varistor adalah beberapa komponen semikonduktor sambungan PN yang dibahas pada kolom khusus.

Transistor Bipolar

Transistor merupakan dioda dengan dua sambungan (junction). Sambungan itu membentuk transistor PNP maupun NPN. Ujung-ujung terminalnya berturut-turut disebut emitor, base dan kolektor. Base selalu berada di tengah, di antara emitor dan kolektor. Transistor ini disebut transistor bipolar, karena struktur dan prinsip kerjanya tergantung dari perpindahan elektron di kutup negatif mengisi kekurangan elektron (hole) di kutup positif. bi = 2 dan polar = kutup. Adalah William Schockley pada tahun 1951 yang pertama kali menemukan transistor bipolar.

Gambar 7 : Transistor npn dan pnp

Akan dijelaskan kemudian, transistor adalah komponen yang bekerja sebagai sakelar (switch on/off) dan juga sebagai penguat (amplifier). Transistor bipolar adalah inovasi yang mengantikan transistor tabung (vacum tube). Selain dimensi transistor bipolar yang relatif lebih kecil, disipasi dayanya juga lebih kecil sehingga dapat bekerja pada suhu yang lebih dingin. Dalam beberapa aplikasi, transistor tabung masih digunakan terutama pada aplikasi audio, untuk mendapatkan kualitas suara yang baik, namun konsumsi dayanya sangat besar. Sebab untuk dapat melepaskan elektron, teknik yang digunakan adalah pemanasan filamen seperti pada lampu pijar.

Bias DC

Transistor bipolar memiliki 2 junction yang dapat disamakan dengan penggabungan 2 buah dioda. Emiter-Base adalah satu junction dan Base-Kolektor junction lainnya. Seperti pada dioda, arus hanya akan mengalir hanya jika diberi bias positif, yaitu hanya jika tegangan pada material P lebih positif daripada material N (forward bias). Pada gambar ilustrasi transistor NPN berikut ini, junction base-emiter diberi bias positif sedangkan base-colector mendapat bias negatif (reverse bias).

Gambar 8 : arus elektron transistor npn

Karena base-emiter mendapat bias positif maka seperti pada dioda, elektron mengalir dari emiter menuju base. Kolektor pada rangkaian ini lebih positif sebab mendapat tegangan positif. Karena kolektor ini lebih positif, aliran elektron bergerak menuju kutup ini. Misalnya tidak ada kolektor, aliran elektron seluruhnya akan menuju base seperti pada dioda. Tetapi karena lebar base yang sangat tipis, hanya sebagian elektron yang dapat bergabung dengan hole yang ada pada base. Sebagian besar akan menembus lapisan base menuju kolektor. Inilah alasannya mengapa jika dua dioda digabungkan tidak dapat menjadi sebuah transistor, karena persyaratannya adalah lebar base harus sangat tipis sehingga dapat diterjang oleh elektron.

Jika misalnya tegangan base-emitor dibalik (reverse bias), maka tidak akan terjadi aliran elektron dari emitor menuju kolektor. Jika pelan-pelan 'keran' base diberi bias maju (forward bias), elektron mengalir menuju kolektor dan besarnya sebanding dengan besar arus bias base yang diberikan. Dengan kata lain, arus base mengatur banyaknya elektron yang mengalir dari emiter menuju kolektor. Ini yang dinamakan efek penguatan transistor, karena arus base yang kecil menghasilkan arus emiter-colector yang lebih besar. Istilah amplifier (penguatan) menjadi salah kaprah, karena dengan penjelasan di atas sebenarnya yang terjadi bukan penguatan, melainkan arus yang lebih kecil mengontrol aliran arus yang lebih besar. Juga dapat dijelaskan bahwa base mengatur membuka dan menutup aliran arus emiter-kolektor (switch on/off).

Pada transistor PNP, fenomena yang sama dapat dijelaskan dengan memberikan bias seperti pada gambar berikut. Dalam hal ini yang disebut perpindahan arus adalah arus hole.

Gambar 9 : arus hole transistor pnp

Untuk memudahkan pembahasan prinsip bias transistor lebih lanjut, berikut adalah terminologi parameter transistor. Dalam hal ini arah arus adalah dari potensial yang lebih besar ke potensial yang lebih kecil.

Gambar 10 : arus potensial

IC : arus kolektor

IB : arus base

IE : arus emitor

VC : tegangan kolektor

VB : tegangan base

VE : tegangan emitor

VCC : tegangan pada kolektor

VCE : tegangan jepit kolektor-emitor

VEE : tegangan pada emitor

VBE : tegangan jepit base-emitor

ICBO : arus base-kolektor

VCB : tegangan jepit kolektor-base

Perlu diingat, walaupun tidak perbedaan pada doping bahan pembuat emitor dan kolektor, namun pada prakteknya emitor dan kolektor tidak dapat dibalik.

Gambar 11 : penampang transistor bipolar

Dari satu bahan silikon (monolitic), emitor dibuat terlebih dahulu, kemudian base dengan doping yang berbeda dan terakhir adalah kolektor. Terkadang dibuat juga efek dioda pada terminal-terminalnya sehingga arus hanya akan terjadi pada arah yang dikehendaki.





  1. PENGERTIAN
    Semikonduktor organik telah menjadi perhatian dalam dunia penelitian sejak 50 tahun yang lalu. Bahan organik dengan kandungan karbon, hidrogen dan oksigen, telah menarik perhatian para peniliti, karena ikatan antar molekul yang lemah dalam keadaan solid , dapat menjadikan bahan organik sebagai bahan insulator dan semiconductor. Akhir-akhir ini diketahui juga bahwa bahan organik semiconductor bersifat photoconductive dibawah sinar biasa. Penemuan ini menarik perhatian industri untuk aplikasi dalam electrophotography dan tabung sinar dalam LCD (Liquid Crystal Display).
    Penelitian organic LED (Ligh Emitting Diode) (OLED) mulai mendapat perhatian sejak research group dari Eastman Kodak melaporkannya tahun 1987 dengan molekul kecil sebagai bahannya, kemudian di susul dengan peniliti dari Cambridge University pada tahun 1990, dengan menggunakan polymer sebagai bahannya.
    Selain aplikasi dalam OLED, aplikasi untuk pembuatan transistor juga mendapat perhatian. Salah satu devaisnya adalah organic thin film transistor (OTFT). Walau kecepatan OTFT ini tidaklah dapat menyaingi transistor dalam silicon, aplikasi dalam smart card yang ramah lingkungan tengah dikembangkan oleh beberapa perusahaan elektronik raksasa.

  2. 2. MENGENAL SEKILAS PENGOLAHAN MATERIAL SILIKON

  3. Perindustrian teknologi semikonduktor merupakan industri yang pertumbuhannya dinamis. Berkat produk-produk industri tersebut telah ditemukan banyak penerapan dalam berbagai bidang industri dan telah memberi jalan terbukanya industri-industri baru. Ledakan perkembangannya nampak dengan adanya penggunaan semi konduktor. Aspek yang sangat berarti bagi industri semikonduktor yaitu sejak transistor ditemukan pada tahun 1948.
    Untuk mengantisipasi perkembangan ke arah masa depan beberapa perusahaan semikonduktor di dunia membuat karakteristik perkembangan yang sudah berjalan selama selang tahun 1980-1987. Setelah diambil solusi karakteristiknya ternyata pada selang waktu tersebut tampak perkembangan penggunaan piranti-piranti yang terbuat dari bahan semikonduktor bisa mencapai 150 kali. Dalam hal ini perkembangan itu akan berlanjut lagi sebagai tantangan imajinatif dan ujian panjang bagi semua personel teknisi atau insinyur elektro.
    a. Teknologi Planar
    Teknologi Planar merupakan satu-satunya teknologi yang menjadi dasar utama dalam permulaan pengolahan bahan-bahan semikonduktor. Dengan adanya teknologi planar telah memungkinkan terciptanya transistor stabil dan mendorong pesatnya ndustri semikonduktor pada akhir tahun 1950-an. Pada awal tahun 1960-an teknologi itu dikembangkan lagi menjadi sebuah piranti baru yang berupa sirkuit terintegrasi yang merupakan kombinasi dari transistor, resistor dan kapasitor.
    Pada teknologi planar yang selalu menjadi perhatian serius saat ini adalah dalam pengolahan bahan baku silikon semikonduktor menjadi bentuk wafer, yang merupakan bahan yang siap dikonversi menjadi bentuk-bentuk piranti seperti IC. Adapun proses yang termasuk menjadi langkah pembuatan wafer silikon yaitu proses produksi silikon polikristalin, pengembangan kristal, serta pemotongan dan pembentukan wafer.
    b. Produksi Silikon Polikrista
    Bahan permulaan untuk produksi silikon umumnya ada 2 macam bahan yang berasal dari bumi, yaitu pasir (silikon dioksida) dan zat karbon yang telah dibersikan (dari arang, batu bara, serpih-serpihan kayu, dan lain-lain). Jika dkedua bahan tersebut bereaksi bersama pada temperatur tinggi dalam tungku elektronik maka silikon dioksida akan terpisah dari oksidanya menjadi silikon saja. Dalam reaksi ini elemen silikon merupakan asap yang terjadi dalam reaksi pada temperatur tersebut. Kemudian dikondensasi sehingga kira-kira memberikan hasil 98% bahan silikon bersih yang dikenal dengan istilah Silikon Tingkat Metalurgi (metalurgical grade silicon).
    SiO2 + 2-------> Si + 2CO
    Dengan hanya berupa sebagian kecil fraksi dari metallurgical grade silicon yang telah dibersihkan maka bahan ini dapat digunakan dalam berbagai macam terapan dalam perakitan piranti-piranti untuk industri semikonduktor.
    Proses pembersihan Metallurgical grade silicon diselesaikan dengan pengubahan material ini ke dalam Trichlorosilane (SiHCl3), yaitu dengan cara fraksinasi sederhana (atau bisa juga dengan distilasi) sehingga bahan silikon menjadi bahan semikonduktor yang standar. Trichlorosilane kemudian dikurangi dengan H2 supaya sekali lagi memberikan hasil suatu polycrystalline silicon. Reaksi untuk membentuk SiHCl3 adalah sebagai berikut:
    Si + 3HCI --------> SiH3 + H2
    1250o C
    [hasil reaksi lain +SiCiH4]
    Fraksinasi terpisah SiHCl3 merupakan hasil utama dari reaksi SiCl3 (silicon tetracloride), doping pengotor klorida (seperti fosfor, boron dan galium) dan klorida logam (seperti besi dan tembaga). Silikon tingkat semikonduktor (yaitu silikon yang kurang lebih terdiri dari 1 bagian per satu milyar impurotas/pengotor) sekarang bisa diproduksi dengan pengurangan temperatur tinggi dari SiHCl3 yang telah bersih. Reaksi kimia ini terjadi dalam suatu kamar yang disebut "decomposer". Reaksi pengurangan yang merupakan reaksi balik dari reaksi di atas adlah sebagai berikut :
    SiHCl3 + H2 --------> Si + 3HCl
    100oC
    c. Pengembangan Kristal
    Ada tiga teknik yang secara komersial digunakan untuk pengembangan kristal silikon, yaitu teknik Czochralski, teknik Float Zone dan teknik Bridgman.

  4. 3. TEKNOLOGI SEMIKONDUKTOR DAN PEMANFAATANNYA
    a. Teknologi Silikon
    Pembahasan tentang divais semikonduktor tentunya tidak bisa lepas dari material semikonduktor itu sendiri sebagai bahan dasar pembuatan divais tersebut. Silikon (Si) dengan persediaan yang berlimpah di bumi dan dengan teknologi pembuatan kristalnya yang sudah mapan, telah menjadi pilihan dalam teknologi semikonduktor. Silikon very large scale integration (VLSI) telah membuka era baru dalam dunia elektronika di abad ke-20 ini. Kebutuhan akan kecepatan yang lebih tinggi dan unjuk kerja yang lebih baik dari komputer telah mendorong teknologi silikon VLSI ke silikon ultra high scale integration (ULSI). Saat ini metaloxide semiconductor field effect transistor (MOSFET) masih dominan sebagai divais dasar teknologi integrated circuit (IC). Dimensi dari MOSFET menjadi semakin kecil dan akan menjadi sekitar 0,1 mikron untuk ukuran giga-bit dynamic random acces memories (DRAMs). Beberapa masalah yang timbul dalam usaha memperkecil dimensi dari MOSFET antara lain efek short channel dan hot carrier yang akan mengurangi unjuk kerja dari transistor itu sendiri.
    Walaupun sudah banyak kemajuan yang dicapai, pertanyaan yang selalu muncul adalah sampai seberapa jauh limit pengecilan yang dapat dilakukan ditinjau dari segi proses produksi, sifat fisika dari divais itu sendiri dan interkoneksinya. Banyak masalah dari segi fabrikasi yang dapat menjadi penghambat. Sebagai salah satu contoh keterbatasan dari proses produksi adalah teknik lithography yaitu teknik yang diperlukan untuk merealisasikan desain sirkuit ke lempengan (waver) silikon dalam proses fabrikasi IC. Dengan menggunakan cahaya sebagai sumber berkas, dimensi dari lithography dengan sendirinya akan dibatasi oleh panjang gelombang dari cahaya itu sendiri. Oleh sebab itu dikembangkan teknik lithography yang lain menggunakan sinar-X dan berkas elektron. Dengan menggunakan kedua teknik ini tidak terlalu ekonomis untuk digunakan pada proses produksi IC secara massal. Dari uraian di atas, terlihat masih adanya beberapa masalah yang akan timbul dalam proses fabrikasi IC di masa yang akan datang.
    b. Teknologi berbasis silikon
    Seperti diketahui, ditinjau dari struktur elektronikanya, material semikonduktor dapat dibedakan atas dua jenis yaitu yang memiliki celah pita energi langsung (direct bandgap) dan celah pita energi tidak langsung (indirect bandgap). Silikon adalah material dengan celah energi yang tidak langsung, di mana nilai minimum dari pita konduksi dan nilai maksimum dari pita valensi tidak bertemu pada satu harga momentum yang sama. Ini berarti agar terjadi eksitasi dan rekombinasi dari membawa muatan diperlukan perubahan yang besar pada nilai momentumnya. Dengan kata lain, silikon sulit memancarkan cahaya. Sifat ini menyebabkan silikon tidak layak digunakan sebagai piranti fotonik/optoelektronik, sehingga tertutup kemungkinan misalnya membuat IC yang di dalamnya terkandung detektor optoelektronik atau suatu sumber pemamcar cahaya dengan hanya menggunakan material silikon saja. Beberapa usaha telah dilakukan untuk mengatasi hal ini antara lain dengan mengembangkan apa yang dikenal sebagai bandgap engineering. Salah satu contohnya adalah menumbuhkan struktur material SiGe/Si straitned layer superlattice. Parameter mekanik strain yang timbul karena perbedaan konstanta kisi kristal antara lapisan SiGe dan Si tersebut akan mempengaruhi struktur elektronik dari material di atas sehingga muncul efek brillioun-zone folding yang mengubah struktur pitanya menyerupai material dengan celah energi langsung (direct bandgap). Kombinasi dari kedua material tersebut memungkinkan terjadinya pemancaran dan penyerapan cahaya. Cara lain yang juga popular untuk memperbaiki sifat optik dari silikon adalah apa yang dinamakan material silikon porous. Dengan pelarutan secara elektrokimia, pada lempeng silikon dapat berbentuk lubang-lubang yang berukuran puluhan angstrom. Dengan bantuan sinar laser, akan dapat dilihat dengan mata telanjang pemancaran cahaya dari material silikon tersebut. Fenomena ini dapat dijelaskan dengan menggunakan model two-dimensional quantum confinement. Kelemahan dari teknik ini adalah sifat reproducibility-nya yang rendah. Kemajuan-kemajuan di atas membuka era baru bagi material silikon dan panduannya untuk diaplikasikan pada divais optoelektronika.
    c. Teknologi GaAs
    Salah satu hambatan dari teknologi silikon adalah sifat listrik yang berhubungan dengan rendahnya mobilitas pembawa muatan dari material silikon ini. Mobilitas adalah parameter yang menyatakan laju dari pembawa muatan dalam semikonduktor bila diberi medan listrik. Untuk membuat piranti berkecepatan tinggi, galium arsenide (GaAs) dan material-material panduannya telah dipertimbangkan sebagai material pengganti silikon. Selain untuk divais elektron, material ini juga digunakan divais fotonik/laser dan divais gelombang mikro (microwave device). GaAs adalah material semikonduktor dari golongan III-V yang memiliki mobilitas elektron sekitar enam kali lebih tinggi dari silikon pada suhu ruang. Material ini bertipe celah energi langsung. Dengan memanfaatkan kelebihan ini, telah berhasil dibuat transistor yang disebut high electron mobility transistor (HEMT), menyusul transistor yang lebih dahulu popular untuk teknologi GaAs yaitu metal semiconductor field effect transistors (MESFET). Struktur dari HEMT mirip dengan MOSFET, tapi dengan menggunakan teknik modulasi doping, di mana elektron dapat dipisahkan dari ion pengotornya dan bergerak dalam sumur potensial dua dimensi (2DEG) dengan kecepatan tinggi. Pengembangan IC dengan berbasis material GaAs saat ini juga sedang ramai diteliti. Beberapa tahun yang lalu telah berhasil dibuat 64 kb static random access memory (SRAM) yang berkecepatan tinggi sebesar 2ns dengan menggunakan teknologi HEMT berukuran 0,6 mikron. Transistor berkecepatan tinggi lainnya yang sedang dikembangkan adalah heterojunction bipolar transistor (HBT). Struktur dari transistor ini adalah sambungan npn di mana emiter menggunakan material dengan celah energi yang lebih besar dibandingkan dengan base dan kolektor. Pada kondisi ini, diharapkan resistansi dari base dan kapasitansi dari sambungan base-emitter akan dapat direduksi sehingga dapat diperoleh frekuensi maksimum osilasi (fmaks) yang tinggi. Saat ini sudah dibuat HBT dengan fmaks 200 GHz. Walaupun banyak kemajuan yang sudah dicapai, banyak orang meragukan kemampuan teknologi GaAs ini untuk dapat bersaing dengan teknologi silikon dalam orde 0,1 mikron atau yang lebih kecil. Itulah sebabnya, banyak perusahaan semikonduktor terutama di Amerika Serikat yang tidak menganggap teknologi GaAs ini sebagai pengganti silikon.
    d. Divais kuantum
    Dewasa ini, perhatian besar juga diberikan pada struktur semikonduktor berdimensi rendah (low-dimensional semiconductor) seperti quantum well (2D), quantum wire (1D) dan quantum dot (0D). Struktur seperti ini adalah pembuka jalan ke era fabrikasi nanoteknologi dan divais kuantum (quantum device). Telah diketahui bahwa bila elektron dikurung dalam daerah potensial dengan dimensi yang sama dengan panjang gelombangnya maka akan muncul sifat gelombang elektron dan berbagai fenomena kuantum akan dapat diamati. Beberapa fenomena kuantum dapat mengurangi performansi dari divais itu sendiri sedangkan fenomena yang lain dapat memacu terciptanya divais kuantum yang baru. Beberapa divais kuantum seperti wire-transistor, single-electron transistor sudah berhasil dibuat dan menunjukkan kecepatan yang tinggi. Permasalahan yang timbul dari divais yang dibuat berdasarkan struktur semikonduktor dimensi rendah ini adalah arus drive yang rendah sehingga masih sulit untuk diaplikasikan. Secara umum, permasalahan yang dihadapi divais kuantum ini adalah operasi kerjanya yang masih harus dilakukan pada suhu rendah (seperti suhu helium cair : 4,2K) agar dapat diamati fenomena kuantum secara jelas. Hal ini tentunya akan menaikkan ongkos pembuatan sehingga belum menarik untuk diproduksi.
    e. Intelligent material
    Dari uraian di atas terlihat bahwa meskipun perkembangan divais semikonduktor dewasa ini sangat cepat, beberapa hambatan sudah mulai terlihat. Pertanyaan yang muncul adalah apakah usaha-usaha untuk memperbaiki performasi dari divais semikonduktor dapat terus dilakukan dengan pola yang ada sekarang ini atau harus dicari pola yang lain. Pola yang ada sekarang adalah bahwa dalam teknologi IC, transistor sebagai divais aktif dasar hanya mempunyai satu fungsi saja dan kemudian diubah menjadi berfungsi banyak dengan bantuan disain sirkuit dan software. Dengan berkembangnya permintaan untuk menciptakan suatu rangkaian terpadu yang makin kompleks, beban yang ditanggung oleh disain software akan makin berat sehingga kemungkinan besar sulit untuk direalisasikan. Untuk itu, dari pihak hardware, haruslah dilakukan usaha untuk dapat membantu meringankan beban tersebut. Salah satu usul adalah menciptakan divais yang multifungsi sehingga divais menjadi lebih adaptif. Divais seperti ini dapat direalisasikan dengan menggunakan apa yang disebut sebagai intelligent material. IC yang terbuat dari divais yang adaptif seperti ini akan menjadi bermultifungsi tanpa harus membebani disain software yang makin kompleks.
    f. Tantangan di Indonesia
    Jadi terlihat bahwa teknologi semikonduktor berkembang sangat pesat dengan mengeksploitasi fenomena-fenomena fisika yang sebelumnya hanya tertulis dalam texbook semikonduktor atau zat padat saja. Hal ini dimungkinkan karena banyaknya kemajuan yang dicapai dalam pengembangan peralatan-peralatan penumbuh material dalam bentuk film tipis. Hal ini juga diimbangi dengan kemajuan dalam teknik fabrikasi divais dan proses produksi. Sebagai teknologi tinggi, teknologi semikonduktor saat ini hanya terpusat di negara-negara industri dan negara industri baru saja karena memang membutuhkan biaya riset yang besar dan banyak tenaga ahli. Untuk Indonesia, langkah terbaik yang harus dilakukan adalah secepat mungkin terlibat dalam teknologi ini sehingga tidak jauh tertinggal. Prioritas pengembangan harus dapat ditentukan sendiri tanpa harus mengikuti jejak dari negara-negara yang sudah lebih dahulu maju dengan teknologi ini. Hal ini tentunya harus dikaitkan dengan peluang kompetisi yang masih tersisa. Negara-negara industri baru di Asia sudah membuktikan bahwa selalu ada peluang yang dapat ditempuh. Salah satu langkah konkrit yang mendesak saat ini adalah memperbanyak para ahli yang menguasai teknologi ini sehingga dapat terbentuk suatu masyarakat semikonduktor ynag dapat bekerja sama.

  5. 4. APLIKASI SEMIKONDUKTOR

  6. 1. Pemanfaatan Lapisan Semikonduktor Sebagai Detektor Kualitas Daging
    Untuk mencegah cepatnya proses pembusukan (hilangnya kesegaran) oleh bakteri pembusuk ini, biasanya daging diawetkan, dengan cara menyimpan daging pada suhu rendah, di mana bakteri tidak melakukan aktivitas dan berkembang. Permasalahannya, sejauh ini belum ada studi tentang batas suhu dimana bakteri tidak aktif melakukan proses penguraian / pembusukan. Kebiasaan yang aman dilakukan adalah menyimpan pada suhu beku. Padahal pendinginan yang sangat rendah memerlukan energi listrik yang besar / biaya yang tinggi. Di samping itu pemanfaatan daging beku tidak segera bisa dilakukan, dan mungkin cita-rasa daging setelah dibekukan tidak sama dengan daging yang tanpa pembekuan. Oleh karena itu, dibutuhkan studi tentang suhu optimal proses pengawetan daging tanpa beku, dimana bakteri tidak aktif, dan studi tentang kondisi kesegaran daging, baik setelah pengawetan maupun setelah pemotongan. Untuk itu diperlukan alat (sensor) untuk mendeteksi ambang perubahan kualitas daging segar menuju pembusukan. Dengan kata lain, alat yang mampu mendeteksi ethil-asetat, pada konsentrasi yang sangat rendah. Pada makalah ini akan dijelaskan proses pembuatan sensor untuk mendeteksi gas ethil-asetat. Sensor dibuat dari bahan semikonduktor padatan SnO2-La2O3 dengan metoda lapisan tebal pada substrat alumina.
    Usaha untuk membuat sensor penciuman atau sensor aroma sebagai hidung elektronik (electronic noses) telah dilakukan sejak ditemukannya teknologi lapisan semikonduktor untuk mendeteksi gas-gas yang menimbulkan bau. Electronic nose memiliki syarat-syarat yang baik untuk digunakan sebagai sensor kimia untuk mendeteksi aroma yaitu:
    1. dapat digunakan berkali-kali (tidak sekali pakai)
    2. simpel, karena dimensinya kecil dalam orde mm
    3. tidak merusak
    Dalam proses pembusukan daging terjadi berbagai reaksi kimia akibat penguraian bakteri. Salah satu gas yang dihasilkan dalam jumlah cukup besar adalah gas etil asetat (CH3COOC2H5). Gas inilah yang diharapkan akan terdeteksi oleh sensor gas.
    Sifat elektrik bahan semikonduktor
    Sensor dari bahan semikonduktor yang terbuat dari logam merupakan oksida logam. Oksida logam tersebut dibedakan berdasarkan sifatnya yaitu tipe-n dan tipe-p. Tipe-n lebih banyak digunakan karena lebih stabil pada gas ambien. La2O3 merupakan semikonduktor tipe-n yang memiliki distribusi elektron yang memenuhi tingkat energi dibawah energi Fermi seperti digambarkan pada gambar 1. Tingkat energi Fermi yang terletak dalam celah energi membatasi kedudukan elektron dalam semikonduktor.
    Karena celah kecil antara tingkat energi Fermi dengan pita konduksi, elektron elektron mudah untuk melompat menuju pita konduksi.

  7. Gambar 1: skema tingkat energi bahan semikonduktor tipe-n.
    Keadaan normal tersebut dapat berubah jika terdapat perbedaan muatan antara permukaan dengan keadaan ambien disekitarnya, sehingga membentuk daerah ruang muatan pada permukaan. Perbedaan muatan tersebut dapat terjadi karena adanya bahan lain seperti O2 yang terabsorbsi dan bertindak sebagai akseptor pada permukaan semikonduktor dan mengikat elektron pada bulk sibawah permukaan. Absorbsi gas pada permukaan La2O3 tersebut mengakibatkan terbentuknay lapisan deplesi pada saerah ruang muatan. Jika bahan mengabsorpsi gas yang bersifat sebagai donor elektron seperti hidrogen pada daerah ruang elektron akan terjadi lapisan akumulasi. Keadaan pita energi pada kedua kondisi seperti itu digambarkan pada gambar 2. Adanya pembengkokan pembengkokan pita energi pada daerah ruang muatan diakibatkan adanya perbedaan muatan elektrostatik pada permukaan.

  8. 2. Komponen Elektronika
    Hambatan ( Resistors )
    Tujuan penggunaan perintang adalah untuk menhadkan pengaliaran arus dalam sesuatu litar. Unit untuk perintang R adalah ohm. Sebagai contoh, R = 10 ohm.
    Kapasitor ( Capacitors )
    Kapasitor pada asasnya dibina oleh dua bahagian pengalir yang dipisahkan oleh satu bahagian penebat yang dipanggil dielektrik ( dielectric ). Unit untuk kapasitor C adalah farad. Sebagai contoh, C = 10 µF.
    Induktor, lilitan ( Inductors, Coils )
    Adalah lilitan yang dialiri arus. Unit untuk induktor L adalah Henry .Sebagai contoh L = 1H.
    Diod ( Diode )
    Perkataan diode sebenarnya adalah gabungan perkataan di bermaksud gabungan manakala ode bermaksud elektrod. Ia adalah komponen elektronik yang dibina dari bahan Semikonduktor ( Semiconductor ). Diode D mempunyai pelbagai kegunaan dan pelbagai nombor siri. Sebagai contoh D = 1N4001.
    Transistor
    Perkataan transistor sebenarnya adalah gabungan perkataan transfer dan resistor. Ia adalah komponen elektronik yang juga dibina dari bahan Semikonduktor ( Semiconductor ). Transistor TR atau Q juga mempunyai pelbagai nombor siri. Sebagai contoh TR = 2N2222.
    Litar Sepadu ( Integrated Circuits ).
    Litar Sepadu ( IC ) adalah komponen elektronik yang mengabungkan pelbagai komponen elektronik contohnya transistor dan diod. Seperti diode dan transistor, Litar Sepadu juga mempunyai nombor siri. Contohnya IC = MC11741.
    3. Sel Suria
    Peranti pepejal yang digunakan untuk menukar cahaya matahari kepada kuasa elektrik dipanggil sel suria.Sel suria adalah peranti semikonduktor dan mempunyai sifat yang sama dengan diod,iaitu ia membenarkan arus mengalirpada satu arah sahaja.Cuma sel suria tidak memerlukan bekalan kuasa elektrik untuk berfungsi sebaliknya sel suria akan membekal kuasa elektrik jika didedahkan keada cahaya.Proses perubahan ini dipanggil kesan fotoelektrik.Kadangkadang sel suria dinamakan sel forovolta atau sel PV.
    Sel suria bergantung kepada sifat khas elektrik unsur silikon (atau bahan semikonduktor lain) yang boleh bertindak dalam satu masa sebagai penebat dan pengkonduksi.Bahan silikon yang diproses khas boleh "menjana" dan "menolak" elektron yang diperolehi dari tenaga suria dan menyeberangi medan elektrik sel untuk mengeluarkan arus elektrik.
    Sinaran suria terdiri dari berjuta-juta zarah keci bertenaga tinggi yang dipanggil foton. Setiap foton membawa satu kuantiti tenaga (mengikut jarak gelombang), setengah foton mempunyai tenaga yang lebih tinggi dari yang lain.Apabila foton yang mempunyai tenaga yang mencukupi berlanggar dengan atom silikon dalam sel suria foton tersebut akan menyentap keluar elektron terluar silikon dari orbitnya mengelilingi nukleus.Elektron yang terbebas tersebut kemudiannya akan bergerak menyeberangi medan elektrik sel.Selepas elektron menyeberangi medan,mereka tidak boleh kembali balik.Oleh kerana banyak elektron yang menyeberangi medan sel,bahagian belakang sel akan menjadi negatif.
    Jika satu beban disambung di antara bahagian positif dan negatif sel,elektron akan mengalir sebagai arus elektrik.Maka,tenaga suria(dalam bentuk foton) akan bertersan menyentap elektron silikon dari orbit mereka dan "menolak" elektron tersebut melalui dawai.Lagi tinggi keamatan cahaya matahari lagi tinggi arus.
    Berikut adalah senarai penggunaan penting kuasa elektrik suria pada masa ini:
    • Lampu rumah,televisyen,pemain kaset dan peralatan kecil.
    • Industri kecil dan institusi.
    • Telekomunikasi
    • Pusat kesihatan,peti ais vaksin dan lampu
    • Pam air
    • Rumah api dan penggunaan lain.
    Sistem bekalan elektrik suria adalah satu cara alternatif untuk mendapatkan bekalan kuasa elektrik selain dari sumber fosil dan hidro.Berbanding dengan kedua-dua sumber lazim ini sistem elektrik suria adalah tergolong dari tenaga yang boleh diperbaharui.Masalah kelupusan bekalan tidak akan menjadi satu perkara yang perlu ditimbangkan.Penjanan kuasa elektrik dengan menggunakan peranti pepejal yag senyap tanpa memerlukan pembakaran membolehkan penjanaan ini digolongkan pula sebagai sahabat alam iaitu tidak akan menyebabkan pencemaran alam sekitar.
    4. Komputer merupakan hasil industri canggih yang menggunakan bahan semikonduktor
    Komputer yang kita kenal saat ini adalah hasil pengembangan teknologi elektronika dan informatika sehingga bentuk komputer yang asalnya berukuran besar dan makan tempat, sekarang berbentuk kecil dengan kemampuan besar. Kemajuan industri komponen elektronika IC (integrated circuit) telah mendorong terciptanya berbagai perangkat chip IC yang beragam dan mendukung berbagai keperluan pembuatan produk elektronik. Kemajuan teknologi elektronika tidak terlepas dari adanya kemajuan dibidang pengetahuan dan pengolahan bahan semikonduktor khususnya silicon.

5. dhcvjkxzh


Tidak ada komentar:

Pengikut

Daftar Blog Saya

Loading...

my game